Perception and prediction of apparent source width and listener envelopment in binaural spherical microphone array auralizations (2024)

Skip Nav Destination

Article navigation

Volume 142, Issue 3

September 2017

  • Previous Article
  • Next Article

September 26 2017

Johannes Nowak;

Johannes Nowak

Acoustics Department, Fraunhofer Institute for Digital Media Technology IDMT

, Ilmenau,

Germany

Search for other works by this author on:

This Site

PubMed

Google Scholar

Stefan Klockgether

Stefan Klockgether

Department of Medical Physics and Acoustics, Cluster of Excellence “Hearing4all,” University of Oldenburg

, Oldenburg,

Germany

Search for other works by this author on:

This Site

PubMed

Google Scholar

Author & Article Information

a)

Electronic mail: johannes.nowak@idmt.fraunhofer.de

J. Acoust. Soc. Am. 142, 1634–1645 (2017)

https://doi.org/10.1121/1.5003917

Article history

Received:

July 11 2016

Accepted:

September 07 2017

  • Views Icon Views
    • Article contents
    • Figures & tables
    • Video
    • Audio
    • Supplementary Data
    • Peer Review
  • Tools Icon Tools
  • Search Site

Citation

Johannes Nowak, Stefan Klockgether; Perception and prediction of apparent source width and listener envelopment in binaural spherical microphone array auralizations. J. Acoust. Soc. Am. 1 September 2017; 142 (3): 1634–1645. https://doi.org/10.1121/1.5003917

Download citation file:

  • Ris (Zotero)
  • Reference Manager
  • EasyBib
  • Bookends
  • Mendeley
  • Papers
  • EndNote
  • RefWorks
  • BibTex
toolbar search

Search Dropdown Menu

Advanced Search |Citation Search

This article deals with the assessment and prediction of the reproduction quality when binaurally auralizing spherical microphone array data for room simulation applications. The auralization is perceptually assessed in a listening experiment using the two attributes, apparent source width (ASW) and listener envelopment (LEV), for spatial quality description, whereas the technical analysis employs a psychoacoustically motivated model for room acoustical perception (RAP) which is specifically designed to estimate ASW and LEV. Both analyses focus on the array configuration in terms of varying modal resolutions and its influence on the spatial reproduction quality. The auralizations comprise three simulated environments, i.e., free-field sound fields as well as a dry and a reverberant room. Ten different audio signals are used as test material. Perceptual results show that the array configuration strongly influences the perception of ASW and LEV which also depends on the reflection properties of the simulated room. The ASW and LEV predictions by the RAP model correlate well with the results from the listening experiment.

Topics

Building acoustics, Microphone array, Musical instruments, Musical performance, Audiometry, Room acoustics, Sound source perception, Sound production technology, Electrical properties and parameters, Covariance and correlation

References

1.

H.

Møller

, “

Fundamentals of binaural technology

,”

Appl. Acoust.

36

,

171

218

(

1992

).

https://doi.org/10.1016/0003-682X(92)90046-U

Google Scholar

Crossref

2.

A.

Lindau

, “

Binaural resynthesis of acoustical environments—Technology and perceptual evaluation

,” Ph.D. dissertation,

Audio Comm. Group

,

TU Berlin, Berlin, Germany

,

2014

.

Google Scholar

3.

S.

Werner

,

F.

Klein

, and

K.

Brandenburg

, “

Influence of scene complexity and room acoustic disparity on perception of quality features using a binaural synthesis system

,” in

Proceedings of the 7th International Workshop on Quality of Multimedia Experience (QoMEX)

,

Costa Navarino, Greece

(

2015

).

Google Scholar

4.

A.

Avni

,

J.

Ahrens

,

M.

Geier

,

S.

Spors

,

H.

Wierstorf

, and

B.

Rafaely

, “

Spatial perception of sound fields recorded by spherical microphone arrays with varying spatial resolution

,”

J. Acoust. Soc. Am.

133

,

2711

2721

(

2013

).

https://doi.org/10.1121/1.4795780

Google Scholar

Crossref

PubMed

5.

J.

Nowak

,

K.

Jurgeit

, and

J.

Liebetrau

, “

Assessment of spherical microphone array auralizations using open-profiling of quality (OPQ)

,” in

Proceedings of the 8th International Workshop on Quality of Multimedia Experience (QoMEX)

,

Lisbon, Portugal

(

2016

), pp.

82

87

.

Google Scholar

Crossref

6.

B.

Bernschütz

, “

Microphone arrays and sound field decomposition for dynamic binaural recording

,” Ph.D. dissertation,

Audio Comm. Group

,

TU Berlin, Berlin, Germany

,

2016

.

Google Scholar

7.

M.

Lombard

and

T.

Ditton

, “

At the heart of it all: The concept of presence

,”

J. Comp. Med.-Commun.

3

(

1997

).

https://doi.org/10.1111/j.1083-6101.1997.tb00072.x

Google Scholar

8.

T.

Schubert

,

F.

Friedmann

, and

H.

Regenbrecht

, “

The experience of presence: Factor analytic insights

,”

MIT Press J.

10

,

266

281

(

2001

).

Google Scholar

9.

S.

Bech

and

N.

Zacharov

,

Perceptual Audio Evaluation—Theory, Method and Application

(

John Wiley & Sons Ltd

,

Chichester, UK

,

2006

),

462

pp.

Google Scholar

Crossref

10.

B.

Rafaely

,

Fundamentals of Spherical Array Processing

(

Springer

,

Heidelberg, Germany

,

2015

),

193

pp.

Google Scholar

Crossref

11.

F.

Melchior

,

Z.

Kuang

,

D.

de Vries

, and

S.

Brix

, “

Spherical array systems—On the effect of measurement errors in terms of perceived auralization quality

,” in

Proceedings of the NAG/DAGA

,

Rotterdam, Denmark

(

2009

).

Google Scholar

12.

A. A.

Williams

and

S. P.

Langron

, “

The use of free-choice profiling for the evaluation of commercial ports

,”

J. Sci. Food Agricul.

35

,

558

568

(

1984

).

https://doi.org/10.1002/jsfa.2740350513

Google Scholar

Crossref

13.

D.

Strohmeier

,

S.

Jumisko-Pyykkö

, and

K.

Kunze

, “

Open profiling of quality: A mixed method approach to understanding multimodal quality perception

,” Adv. Multimedia, Article ID: 658980 (

2010

).

Google Scholar

14.

N.

Zacharov

and

K.

Koivuniemi

, “

Audio descriptive analysis and mapping of spatial sound displays

,” in

Proceedings of the 7th International Conference on Auditory Displays (ICAD)

,

Espoo, Finland

(

2001

), pp.

95

104

.

Google Scholar

15.

A.

Lindau

,

V.

Erbes

,

S.

Lepa

,

H.-J.

Maempel

,

F.

Brinkmann

, and

S.

Weinzierl

, “

A Spatial Audio Quality Inventory (SAQI)

,”

Acta Acust. Acust.

100

,

984

994

(

2014

).

https://doi.org/10.3813/AAA.918778

Google Scholar

Crossref

16.

F.

Rumsey

, “

Spatial quality evaluation for reproduced sound: Terminology, meaning, and a scene-based paradigm

,”

J. Aud. Eng. Soc.

50

,

651

666

(

2002

).

Google Scholar

17.

S.

Weinzierl

and

M.

Vorländer

, “

Room acoustical parameters as predictors of room acoustical impression: What do we know and what would we like to know?

,”

Acoust. Australia

43

,

41

48

(

2015

).

https://doi.org/10.1007/s40857-015-0007-6

Google Scholar

Crossref

18.

G.

Soulodre

, “

Can reproduced sound be evaluated using measures designed for concert halls?

,” in

Workshop on Spatial Audio and Sensory Evaluation Techniques (SASET)

,

Guildford, UK

(

2006

).

Google Scholar

19.

J.

Berg

, “

The contrasting and conflicting definitions of envelopment

,” in

Proceedings of the 126th AES Convention

, Paper No. 7808 (

2009

).

Google Scholar

20.

L. L.

Beranek

,

Concert Halls and Opera Houses: Music, Acoustics, and Architecture

, 2nd ed. (

Springer

,

Heidelberg, Germany

,

2003

),

662

pp.

Google Scholar

21.

J.

Bradley

,

R.

Reich

, and

S.

Norcross

, “

On the combined effects of early- and late-arriving on spatial impression in concert halls

,”

J. Acoust. Soc. Am.

108

,

651

661

(

2000

).

https://doi.org/10.1121/1.429597

Google Scholar

Crossref

PubMed

22.

J.

Nowak

,

J.

Liebetrau

, and

T.

Sporer

, “

On the perception of apparent source width and listener envelopment in wave field synthesis

,” in

Proceedings of the 5th International Workshop on Quality of Multimedia Experience (QoMEX)

Klagenfurth, Austria

(

2013

), pp.

82

87

.

Google Scholar

Crossref

23.

L. L.

Beranek

, “

The sound strength parameter G and its importance in evaluating and planning the acoustics of halls for music

,”

J. Acoust. Soc. Am.

129

,

3020

3026

(

2011

).

https://doi.org/10.1121/1.3573983

Google Scholar

Crossref

PubMed

24.

S.

Klockgether

and

S.

van de Par

, “

A model for the prediction of room acoustical perception based on the just noticeable differences of spatial perception

,”

Acta Acust. Acust.

100

,

964

971

(

2014

).

https://doi.org/10.3813/AAA.918776

Google Scholar

Crossref

25.

E.

Hulsebos

, “

Auralization using wave field synthesis

,” Ph.D. dissertation,

TU Delft, Delft, Netherlands

,

2004

.

Google Scholar

26.

M.

Barron

and

A. H.

Marshall

, “

Spatial impression due to early lateral reflections in concert halls: The derivation of a physical measure

,”

J. Sound Vib.

77

,

211

232

(

1981

).

https://doi.org/10.1016/S0022-460X(81)80020-X

Google Scholar

Crossref

27.

W.

Kuhl

, “

Spaciousness (spatial impression) as a component of total room impression

,”

Acoustica

40

,

167

181

(

1978

).

Google Scholar

28.

H.

Kuttruff

,

Room Acoustics

, 5th ed. (

Spon Press

,

New York

,

2009

),

389

pp.

Google Scholar

29.

T.

Lokki

,

J.

Pätynen

,

A.

Kusinen

, and

S.

Tervo

, “

Disentangling preference ratings of concert hall acoustics using subjective sensory profiles

,”

J. Acoust. Soc. Am.

132

,

3148

3161

(

2012

).

https://doi.org/10.1121/1.4756826

Google Scholar

Crossref

PubMed

30.

J.

Becker

and

M.

Sapp

, “

Synthetic soundfields for the rating of spatial perceptions

,”

Appl. Acoust.

62

,

217

228

(

2001

).

https://doi.org/10.1016/S0003-682X(00)00057-8

Google Scholar

Crossref

31.

S.

Bertet

,

J.

Daniel

,

E.

Parizet

, and

O.

Warusfel

, “

Investigation on the restitution system influence over perceived higher order ambisonics sound field: A subjective evaluation involving from first to fourth order systems

,”

J. Acoust. Soc. Am.

123

,

3936

(

2008

).

https://doi.org/10.1121/1.2936007

Google Scholar

Crossref

32.

B.

Rafaely

, “

Analysis and design of spherical microphone arrays

,”

IEEE Trans. Spec. Aud. Proc.

13

,

135

143

(

2005

).

https://doi.org/10.1109/TSA.2004.839244

Google Scholar

Crossref

33.

F.

Zotter

, “

Analysis and synthesis of sound radiation with spherical arrays

,” Ph.D. dissertation,

KU Graz

,

Graz, Austria

,

2009

.

Google Scholar

34.

E.

Williams

,

Fourier Acoustics—Sound Radiation and Nearfield Acoustical Holography

(

Academic Press

,

San Diego

,

1999

), p.

186

.

Google Scholar

35.

B.

Rafaely

and

A.

Avni

, “

Interaural cross correlation in a sound field represented by spherical harmonics

,”

J. Acoust. Soc. Am.

127

,

823

828

(

2010

).

https://doi.org/10.1121/1.3278605

Google Scholar

Crossref

PubMed

36.

L. S.

Davis

,

R.

Duraiswami

,

E.

Grassi

,

N. A.

Gumerov

,

Z.

Li

, and

D. N.

Zotkin

, “

High order spatial audio capture and its binaural head-tracked playback over headphones with HRTF cues

,” in

Proceedings of the 119th AES Convention

, Paper No. 6540,

New York

(

2005

).

Google Scholar

37.

W. C.

Sabine

,

Collected Papers on Acoustics

(

Harvard University Press

,

Cambridge, UK

,

1922

).

Google Scholar

38.

W. d. V.

Keet

, “

The influence of early lateral reflections on spatial impression

,” in

Proceedings of the 6th International Congress on Acoustics (ICA)

,

Tokyo, Japan

(

1968

), pp.

E53

E56

.

Google Scholar

39.

A.

Wabnitz

,

N.

Epain

,

C.

Jin

, and

A.

van Schaik

, “

Room acoustics simulation for multichannel microphone arrays

,” in

Proceedings of the International Symposium on Room Acoustics (ISRA)

,

Melbourne, Australia

(

2010

).

Google Scholar

40.

B.

Bernschütz

,

C.

Pörschmann

,

S.

Spors

, and

S.

Weinzierl

, “

SOFiA sound field analysis toolbox

,” in

Proceedings of the International Conference on Spatial Audio (ICSA)

,

Detmold, Germany

(

2011

).

Google Scholar

41.

V.

Erbes

,

F.

Schultz

,

A.

Lindau

, and

S.

Weinzierl

, “

Evaluation of equalization methods for binaural signals

,” in

Proceedings of the DAGA

,

Darmstadt, Germany

(

2012

).

Google Scholar

42.

Z.

Schärer

and

A.

Lindau

, “

Evaluation of equalization methods for binaural signals

,” in

Proceedings of the 126th AES Convention

, Paper No. 7721,

Munich, Germany

(

2009

).

Google Scholar

43.

F.

Schultz

,

A.

Lindau

,

M.

Markarski

, and

S.

Weinzierl

, “

An extraaural headphone for optimized binaural reproduction

,” in

Proceedings of the 26th Tonmeistertagung

,

Leipzig, Germany

(

2010

).

Google Scholar

44.

ITU Recommendation ITU-R BS. 1534-1, “

Method for the subjective assessment of intermediate quality level of coding systems

” (International Telecommunication Union, Geneva, Switzerland,

2003

).

45.

Sound quality assessment material recordings for subjective tests, European Broadcasting Union, E. B. U.

2008

, https://tech.ebu.ch/publications/sqamcd (Last viewed September 10, 2013).

46.

R. A.

Bailey

,

Design of Comparative Experiments

(

Cambridge University Press

,

Cambridge, UK

,

2008

), pp.

60

63

.

Google Scholar

Crossref

47.

M.

Kuhn

and

K.

Johnson

,

Applied Predictive Modeling

(

Springer

,

New York

,

2013

),

600

pp.

Google Scholar

Crossref

© 2017 Acoustical Society of America.

2017

Acoustical Society of America

You do not currently have access to this content.

Sign in

Don't already have an account? Register

Sign In

You could not be signed in. Please check your credentials and make sure you have an active account and try again.

Reset password

Register

Sign in via your Institution

Sign in via your Institution

Pay-Per-View Access

$40.00

Buy This Article

507 Views

8 Web of Science

6 Crossref

View Metrics

×

Citing articles via

Web Of Science (8)

Google Scholar

Crossref (6)

  • Most Read
  • Most Cited

A survey of sound source localization with deep learning methods

Pierre-Amaury Grumiaux, Srđan Kitić, et al.

Musical instruments as dynamic sound sources

David Ackermann, Fabian Brinkmann, et al.

A large-scale validation study of aircraft noise modeling for airport arrivals

Thomas C. Rindfleisch, Juan J. Alonso, et al.

Perception and prediction of apparent source width and listener envelopment in binaural spherical microphone array auralizations (2024)
Top Articles
Latest Posts
Article information

Author: Tish Haag

Last Updated:

Views: 5947

Rating: 4.7 / 5 (67 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Tish Haag

Birthday: 1999-11-18

Address: 30256 Tara Expressway, Kutchburgh, VT 92892-0078

Phone: +4215847628708

Job: Internal Consulting Engineer

Hobby: Roller skating, Roller skating, Kayaking, Flying, Graffiti, Ghost hunting, scrapbook

Introduction: My name is Tish Haag, I am a excited, delightful, curious, beautiful, agreeable, enchanting, fancy person who loves writing and wants to share my knowledge and understanding with you.